59IHSSF3201

DocumentID

NONCD0002796

Site Name

BRENNTAG SOUTHEAST

DocumentType Site Assessment Rpt (SAR)

RptSegment

1

DocDate

3/27/1987

DocRcvd

2/27/2007

Вох

SF3201

AccessLevel

PUBLIC

Division

WASTE MANAGEMENT

Section

SUPERFUND

Program

IHS (IHS)

DocCat

FACILITY

Addendum
Environmental Sub-Surface
Investigation
Annandale Corp. Site

Prepared for Worth Chemical Corp. Greensboro, NC

Prepared by T. R. Edgerton, Inc. Cary, NC

March 27, 1987

T.R. Edgerton, Inc. Environmental Consultants

March 27, 1987

Mr. Calvin Lynch Vice-President Worth Chemical Corp. P.O. Box 20725 Greensboro, NC 27420

Re: Addendum to Environmental Sub-Surface Investigation - Annandale Corporation Site, T. R. Edgerton, Inc. Job #1052-086-004

Dear Mr. Lynch:

T. R. Edgerton, Inc. is pleased to submit this addendum to the "Environmental Sub-Surface Investigation..." report submitted to you and Worth Chemical Corporation on February 25, 1987.

INTRODUCTION

T. R. Edgerton, Inc. was requested by Worth Chemical Corp. after a thorough review of the February 25, 1987 report titled "Environmental Sub-Surface Investigation Annandale Corporation Site" to perform additional sampling of soils on said property and extensive resampling of ground-water monitor wells.

An interdisciplinary approach to total environmental problem solving.

OBJECTIVES

The objectives of the additional soil sampling was to further define sources of potential heavy metal contamination. Extensive ground-water monitor well sampling was performed to further define if any impact on ground water underlying the said site.

Soil Sampling

Soil sampling was conducted on 3/11/87. Locations of soil sampling are shown in Figure 1. Sampling techniques followed guidelines found in EPA guidelines document EPA-600/2-80-018. Briefly soil samples (AN-4, AN-S, BG) were collected at surface using previously decontaminated stainless steel spoons. Soil samples AN-1, AN-2, AN-3 were collected at depth of 6-12 inches using a previously decontaminated stainless steel auger.

Ground-Water Monitor Well Sampling

Ground-water monitoring well sampling was conducted on 3/11/87 and 3/17/87. Sampling procedures and monitor well evacuation and development followed procedures found in (1) "Manual of Ground-Water Quality Sampling Procedures" USEPA, 1981; (2) "RCRA Ground-Water Monitoring Technical Enforcement Guidance Document", USEPA, September, 1986; (3) Guidance Document - August 22, 1985 NC office Solid and Hazardous Waste "An Approved RCRA Ground-Water Sampling and Analysis Plan".

Briefly, 3-5 well volumes were removed from each well before each sampling event using a teflon bailer. Samples were collected from each well for the metals arsenic, barium, cadmium, chromium, lead, nickel, selenium and zinc and inorganic parameter phenol. Additional samples were collected from rinses of bailers used for sampling and distilled water used for rinsing of the bailers. Samples were collected, split into two fractions and analyzed by two independent laboratories.

Throughout sampling and testing procedures, chain-of-custody was adhered too. Copies of the chain-of-custody are found in the appendices.

Chemical Testing

Inorganic parameters (metals, cyanide, phenol) followed methods found in (1) "Methods for Chemical Analysis of Water and Waste" EPA-600/4-79-020; and (2) "Test Methods for Evaluating Solid Waste" EPA SW-846.

CHEMICAL TESTING RESULTS

<u>Soils</u>

The heavy metal barium, was detected at levels above background at sample points AN-1, AN-2 and AN-5. All other parameters were detected at background levels. Results for soil sampling is found in the appendices section.

Ground-Water Monitoring Results

Barium was detected in all wells from both laboratories and both sampling occasions. Lead was detected in wells AB-1 and AB-3 by Environmental Testing on the 3/11/87 sampling event and well AB-1 on the 3/17/87 sampling event. Chemical & Environmental Technology detected lead on sampling event 3/11/87 in wells AB-2 and AB-3 and well AB-1 on the 3/17/87 sampling event. Nickel was detected by Chemical & Environmental Technology in all wells but AB-2 on both sampling events.

DISCUSSION OF RESULTS

Soils-Chemical Testing

The heavy metal contaminant Barium was detected above background levels at soil sampling points AN-1, AN-2 and AN-4. This indicates that sources of Barium contamination is from both railroad activity and fill dirt used in building construction. It must be noted that there does not exist on site by soil testing any contaminants considered to be hazardous under 42USC9601 (RCRA) or 42USC9601 (CERCLA).

Ground-Water Chemical Testing

The heavy metal barium was detected on all wells from all sampling events by both laboratories performing the analytical testing. The discrepancies between laboratories on measurable levels is possibly due to the high contact of silty material contained in samples AB-1 and AB-3 submitted to Environmental Testing. Testing results can be found in the

appendices section and Table 1-4. Table 5 is a listing of contaminant levels by well and sampling event with bailer blank concentration subtracted. The mean and standard deviation is included for each element where significant.

CONCLUSIONS

Exhaustive testing of ground-water monitor wells on the Annandale property site indicate as discussed in the February 25, 1987 report that ground water underlying this site has been impacted. Potential sources of contamination to groundwater may possibly be able to attribute to railroad activity and the introduction on-site of fill material during construction of the current manufacturing facility. Several possible other sources of contamination may exist. These sources are off property migration of waste onto property or leachability of underlying rock to groundwater.

Levels of contaminates identified in soil indicates that no hazardous constituents under 42USC9601 (RCRA) or 42USC9601 (CERCLA) exist on site.

T. R. EDGERTON, INC.

Thomas R. Edgerton, FAIC, CPC

Senior Consultant

Brent Chambers

Project Manager/Geologist

Tables

Table 1
Testing Results
Ground-water Monitor Wells
Environmental Testing
Results in mg/L
3/11/87 Sampling

	Distilled						
<u>Parameter</u>	H ₂ O	<u>AB-1</u>	<u>Blank</u>	<u>AB-2</u>	<u>Blank</u>	<u>AB-3</u>	<u>Blank</u>
		-					
Arsenic	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Barium	<0.050	3.220	<0.050	1.523	<0.050	5.550	<0.050
Cadmium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chromium	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	<0.010	0.014	<0.010	<0.010	<0.010	0.024	0.012
Nickel	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015
Selenium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc	0.076	<0.010	0.079	0.015	0.073	0.028	0.079
Phenols	<0.050	0.079	<0.050	<0.050	0.063	<0.050	<0.050

Table 2
Testing Results
Ground-water Monitor Wells
Environmental Testing
Results in mg/L
3/17/87 Sampling

	Distilled	i					
Parameter	н ₂ 0	<u>AB-1</u>	<u>Blank</u>	<u>AB-2</u>	<u>Blank</u>	<u>AB-3</u>	<u>Blank</u>
		_					
Arsenic	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Barium	<0.050	3.856	<0.050	1.721	<0.050	5.432	<0.050
Cadmium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chromium	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	<0.010	0.017	<0.010	<0.010	0.012	0.011	0.015
	<0.015	0.017	0.040	<0.015	0.037	0.027	0.015
Nickel		<0.027	<0.005	<0.015	<0.005	<0.005	<0.005
Selenium	<0.005			,		<0.010	0.010
Zinc	<0.010	<0.010	<0.010	<0.010	<0.010		
Phenols .	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050

Table 3
Testing Results
Ground-water Monitor Wells
Chemical & Environmental Technology
Results in mg/L
3/11/87 Sampling

<u>Parameter</u>	Distilled H ₂ O	<u>AB-1</u>	Blank	<u>AB-2</u>	Blank	<u>AB-3</u>	Blank
Arsenic	0.001	0.004	0.002	<0.003	0.002	<0.028	0.003
Barium	0.05	1.26	<0.01	1.12	<0.01	1.30	<0.01
Cadmium	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	<0.001
Chromium	0.027	0.040	0.017	0.028	<0.001	0.060	0.007
Lead	0.023	0.036	<0.037	0.040	0.031	0.056	0.024
Nickel	<0.001	0.032	<0.001	0.005	<0.001	0.098	<0.001
Selenium	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	0.073	0.032	<0.071	0.031	0.074	0.075	0.100
Phenols	<0.001	0.011	<0.004	0.010	0.005	<0.001	<0.001

Table 5
Monitor Wells - Statistical
Elevations*
3/11/87 Sampling Results in mg/L

Parameter	AB-1			AB-2			AB-3		
	X	S.D.	Range	X	S.D.	Range	X	S.D.	Range
Arsenic	NS	NS	0.004-<0.010	NS	NS	0.001-<0.010	NS	NS	<0.010-0.0025
Barium	2.24	1.39	1.26-3.22	1.32	0.29	1.12-1.523	3.43	3.01	1.30-5.55
Cadmium	NS	NS	<0.001-<0.005	NS	NS	<0.001-<0.005	NS	NS	0.003-<0.005
Chromium	NS	NS	<0.010-0.23	NS	NS	<0.010-0.028	NS	NS	<0.010-0.053
Lead	NS	NS .	<0.001-0.014	NS	NS	<0.010-0.009	NS	NS	0.012-0.032
Nickel	NS	NS	<0.015-0.032	NS	NS	0.005-<0.015	NS	NS	<0.015-0.098
Selenium	NS	NS	<0.001-<0.005	NS	NS	<0.001-<0.005	NS	NS	<0.001-<0.005
Zinc	NS	NS	<0.010	NS	NS	<0.010	NS	NS	<0.010
Phenols	0.043	0.051	0.007-0.079	NS	NS	<0.050-0.005	NS	NS	<0.001-0013

3/17/87 Sampling Results in mg/L

Parameter	AB-1			AB-2			AB-3		
	X	S.D.	Range	X	S.D.	Range	<u>x</u>	S.D.	Range
Arsenic	NS	NS	<0.01-0.05	NS	NS	0.010	NS	NS	<0.010-0.014
Barium	2.456	1.98	1.06-3.856	1.476	0.35	1.23-1.721	3.211	3.14	.99-5.432
Cadmium	NS	NS	0.001-<0.005	NS	NS	<0.005	NS	NS	<0.005
Chromium	NS	NS	<0.010-0.012	NS	NS	<0.010-0.011	NS	NS	<0.010-0.013
Lead	0.030	0.018	0.017-0.043	NS	NS	<0.001-<0.010	NS	NS	<0.001
Nickel	NS	NS	<0.001-0.054	NS	NS	<0.001-<0.010	0.031	0.027	0.012-0.050
Selenium	NS	NS	<0.001	NS	NS	<0.001	NS	NS	<0.001
Zinc	NS ·	NS	<0.010-0.032	NS	NS	<0.010-0.0	NS	NS	<0.010-0.030
Phenols	NS	NS	<0.001	NS	NS	<0.050	NS	NS	<0.050

*Well data - both laboratories - blank subtracted NS - Not significant

Soil Test Results

ENVIRONMENTAL LABORATORY SERVICES

JOHN M. OGLE PRESIDENT

P. O. BOX 12298 RESEARCH TRIANGLE PARK, N. C. 27709 Phone (919) 467-3090

March 23, 1987

Mr. Tom Edgerton

T. R. Edgerton, Inc.

P. O. Box 1307

Cary, North Carolina 27511

Reference: Purchase Order Number 1052-004

Dear Mr. Edgerton:

Enclosed you will find the results of the samples submitted to us for chemical analysis. If any part of the analysis data is missing in this report, please be assured that you will receive it very shortly.

All your samples for each and all of the constituents of interest have been analyzed using EPA recommended procedures. If an EPA method was not available, then the method included in "Standard Methods for Water and Wastewater" was used. Additionally, all EPA approved QA/QC protocols were strictly followed during your sample analyses. It is our policy to store such QA/QC data in our files and make them available to our clients for a nominal charge, upon request.

We appreciate your trust with the submitted sample(s) for chemical analysis and hope we will be of service to you in the very near future. If you have any questions regarding this report, do no hesitate to let us know.

Very sincerely yours,

CHEMICAL & ENVIRONMENTAL TECHNOLOGY, INC.

A. D. Shendrikar, PhD Technical Director

ADS/gw

Enclosures: Sample History

Analytical Results

ENVIRONMENTAL LABORATORY SERVICES

JOHN M. OGLE PRESIDENT P. O. BOX 12298 RESEARCH TRIANGLE PARK, N. C. 27709 PHONE (919) 467-3090

March 23, 1987

Page 2 of 7

Mr. Tom Edgerton

T. R. Edgerton, Inc.

P. O. Box 1307

Cary, North Carolina 27511

Reference: Purchase Order Number 1052-004

SAMPLE HISTORY

	C & ET		
CLIENT ID	SAMPLE	DATE RECEIVED	DATE ANALYZED
AN-1	6636	3/12/87	3/13/87 to 3/23/87
AN-2	6637	3/12/87	3/13/87 to 3/23/87
AN-3	6638	3/12/87	3/13/87 to 3/23/87
AN-4	. 6639	3/12/87	3/13/87 to 3/23/87
AN-5	6640	3/12/87	3/13/87 to 3/23/87
BG	6641	3/12/87	3/13/87 to 3/23/87

ANALYTICAL RESULTS

		** ****	****	
PARAMETER	METHOD 1	_AN-1_	AN-2	: AN-3
Arsenic	206.2	0.16	0.35	0.10
Barium	208.1	64.3	118	27.9
Chromium	218.1	0.28	0.81	0.30
Lead	239.1	0.48	1.53	1,24
Nickel	249.1	0.33	0.56	< 0.01
Zinc	289.1	0.37	1.05	0.28
Cyanide	335.2	< 0.01	< 0.01	< 0.01
Solids, Percent	160.6	84.4	82.5	85.9

PARAMETER		\mathtt{METHOD}^1	AN-4	AN-5	BG
Arsenic	~	206.2	0.59	0.85	0.30
Barium		208.1	84.5	19.1	20.4
Chromium		218.1	0.48	1.02	0.60
Lead	1	239.1	1.59	2.86	3.51
Nickel .	,	249.1	0.88	0.28	0.18
Zinc	•	289.1	1.49	1.15	1.40
Cyanide		335.2	< 0.01	< 0.01	< 0.01
Solids, Percent		160.6	78.3	78.1	76.4

All result units expressed in mg/kg dry weight except Solids, Percent...%

CHEMICAL & ENVIRONMENTAL TECHNOLOGY, INC.

Kenneth L. Jesneck

Lab Manager

KLJ/gw

 $^{^{1}}$ "Methods for Chemical Analysis of Water and Wastes," EPA 600/4-79-020.

QUALITY CONTROL DATA

ARSENIC

Single Injection Analysis
QC Known Recovery 113%, 102%, 93.7%: Average = 102.9%

BARIUM

SAMPLE	RUN STANDARD DEVIATION	RELATIVE STANDARD DEVIATION	% RECOVERY OR CONCENTRATION
Known	0.078	0.6%	101%
Digested Blank	0.016	8.7%	0.10mg/L
Blank	0.015	9.4%	0.08mg/L
Digested Known	0.151	6.5%	96.6%
AN-1	0.062	2.1%	
AN-2	0.152	3.0%	
AN-3	0.075	6.2%	
AN-4	0.019	0. 6 %	
AN-5	0.002	0.2%	•
BG	0.075	8.3%	
Known	0.484	11.2%	102%

CHROMIUM \

SAMPLE	RUN STANDARD DEVIATION	RELATIVE STANDARD DEVIATION	% RECOVERY OR CONCENTRATION
Known Digested Blank Blank Digested Known AN-1 AN-2 AN-3 AN-4 AN-5 BG Known	0.013 0.013 0.012 0.023 0.020 0.013 0.019 0.016 0.017 0.009	7.0% 99.9%1 99.9%1 5.9%1 99.9%1 36.7%1 99.9%1 83.3% 41.9% 34.3% 6.5%	92.7% 0.003mg/L 0.004mg/L 95.1%

¹ Contains a negative reading - sample at or above detection limit.

T.EAD

SAMPLE RU	N STANDARD DEVIATION	RELATIVE STANDARD DEVIATION	% RECOVERY OR CONCENTRATION
Known Digested Blank Blank Digested Known AN-1 AN-2 AN-3	0.016 0.007 0.008 0.009 0.002 0.010 0.005	7.8% 33.4% 26.3% 2.0% 8.8% 15.4%	101% 0.010mg/L < 0.001mg/L 107%
AN-4 AN-5 BG Known	0.001 0.011 0.022 0.007	1.9% 9.7% 14.7% 3.4%	105%

NICKEL

SAMPLE	RUN STANDARD DEVIATION	RELATIVE STANDARD DEVIATION.	% RECOVERY OR CONCENTRATION
Known	0.007	7.2%	103%
Digested Blank	0.002	99.9%	< 0.001mg/L
Blank	0.003	55.3%	$0.005 \mathrm{mg/L}$
Digested Known	0.007	7.2%	1.21%
AN-1	0.002	15.1%	
AN-2	0.004	18.9%	
AN-3	0.002	23.2%	. •
AN-4	0.003	8.3%	
AN-5	0.001	10.9%	
BG	0.002	25.6%	
Known	0.007	6.5%	102%

ZINC

SAMPLE	RUN STANDARDDEVIATION	RELATIVE STANDARD DEVIATION	% RECOVERY OR CONCENTRATION
Known	0.008	3.7%	105%
Digested Blank	0.001	43.7%	0.001mg/L
Blank	0.000	99.9%	< 0.001mg/L
Digested Known	0.008	1.9%	105%
AN-1	0.000	2.5%	
AN-2	0.001	3.2%	
AN-3	0.000	2.6%	
AN-4	0.001	1.4%	
AN-5	0.001	1.9%.	
BG	0.000	0.6%	
Known	0.001	0.3%	102%

Ground-water Test Results

SAMPLES ____

6 __ COLLECTION DATE Noted Below

Mr. T. R. Edgerton T. R. Edgerton, Inc. 102 F Woodwinds Industrial

Court

Cary, NC 27511

March 19, 1987

1. distilled water (3-11-87)

2. AB-1 (3-11-87)

4. AB-2 (3-11-87) 5. AB-2 Bailer Blank (3-11-87)

3. AB-1 Bailer Blank (3-11-87) 6. AB-3 (3-11-87)

			Pa	ge 1 of :	3	
PARAMETERS Results in MG/L unless otherwise noted	1	2	3	4	5	6
BOD5 @ 20°C						
COD @ 0.25N K2Cr207						
Chlorine, Total Residual						·
Cyanide, Total (CN)						
Fecal Coliform, #/100 ml						
Fluoride, Total (F)						
MBAS, (Detergents)						
Nitrogen, Ammonia, Total						
Nitrogen, Kjeldahl, Total						
Nitrogen, Nitrate, (Brucine)						
Oil & Grease						
pH (Standard Units)						
Phenols	<0.050	0.079	<0.050	<0.050	0.063	<0.050
Phosphorus, Total (P)						
Residue, Total						1
Residue, Total Nonfilterable					<u> </u>	
The second secon			†	 		•
					<u> </u>	
METALS Results in AG/L		. L	sa Ke	medy		
Aluminum, Total (Al)				· · · · · · · · · · · · · · · · · · ·		1
Arsenic, Total (As)	<10	<10	<10	<10	<10	<10
Barium, Total (Ba)	<50	3220	<50	1523	<50	5550
Cadmium, Total (Cd)	< 5	< 5	<5	< 5	<5	<5
	<10				 	<10
Copper, Total (Cu)						1
			1			
	<10	14.3	<10	<10	<10	24.3
	\ <u></u>		1 - \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	<u> </u>	1	1
· · · · · · · · · · · · · · · · · · ·	<15	<15	<15	∠15	∠15	<15
			T		1	<5
		_ >=	1->-	<u> </u>	 	1
Zinc, Total (Zn)	76	<10	79	15	73	28
	Results in MG/L unless otherwise noted BOD5 @ 20°C COD @ 0.25N K2Cr207 Chlorine, Total Residual Cyanide, Total (CN) Fecal Coliform, #/100 ml Fluoride, Total (F) MBAS, (Detergents) Nitrogen, Ammonia, Total Nitrogen, Kjeldahl, Total Nitrogen, Nitrate, (Brucine) Oil & Grease pH (Standard Units) Phenols Phosphorus, Total (P) Residue, Total Residue, Total Nonfilterable Settleable Matter (ML/L/Hour) Turbidity, (NTU) METAIS Results in AG/L Aluminum, Total (As) Barium, Total (Ba) Cadmium, Total (Cd) Chromium, Total (Cu) Iron, Total (Fe) Lead, Total (Pb) Mercury, Total (Hg) Nickel, Total (Ni) Selenium, Total (Se) Silver. Total (Ag)	Results in MG/L unless otherwise noted	Results in MG/L unless otherwise noted BOD5 @ 20°C	PARAMETERS Results in MG/L unless otherwise noted 1	PARAMETERS Results in MG/L unless otherwise noted 1	Results in MG/L unless otherwise noted 1

1. AB-3 Bailer Blank (3-11-87)

2. distilled water (3-17-87)

March 19, 1987

SAMPLES

6

3. AB-1 (3-17-87)

COLLECTION DATE

Noted Below

.

4. AB-1 Bailer Blank (3-17-87)

5. AB-2 (3-17-87)

6. AB-2 Bailer Blank (3-17-87)

Mr. T. R. Edgerton T. R. Edgerton, Inc. 102 F Woodwinds Industrial Court Cary, NC 27511

Page 2 of 3

		Page 2 of 3					
Storet Number	PARAMETERS Results in MG/L unless otherwise noted	1	2	3	4	5	6
00310	BOD5 @ 20°C						
00340	COD @ 0.25N K2Cr2O7						
50060	Chlorine, Total Residual						
00720	Cyanide, Total (CN)						
31616	Fecal Coliform, #/100 ml						
00951	Fluoride, Total (F)						
38260	MBAS, (Detergents)						
00610	Nitrogen, Ammonia, Total						
00625	Nitrogen, Kjeldahl, Total						
00620	Nitrogen, Nitrate, (Brucine)						
00556	Oil & Grease						
00400	pH (Standard Units)				<u> </u>	<u> </u>	†
32730	Phenols	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
00665	Phosphorus, Total (P)						
00500	Residue, Total						
00530	Residue, Total Nonfilterable					1	· · · · · · · · · · · · · · · · · · ·
50086	Settleable Matter (ML/L/Hour)						
00076	Turbidity, (NTU)		1			1	
Storet	METALS		th	isa Ker	we de		
Number	Results in AG/L		l. "'	2.72 (7 /2 /	. 7		
01105	Aluminum, Total (A1)				V		<u> </u>
01002	Arsenic, Total (As)	<10	<10	<10	<10	<10	<10
01007	Barium, Total (Ba)	<50	<50	3856	<50	1721	<50
01027	Cadmium, Total (Cd)	<5	< 5	<5	< 5	<5	<5
01034	Chromium, Total (Cr)	<10	<10	<10	<10	<10	<10
01042	Copper, Total (Cu)					1	
01045	Iron, Total (Fe)						
01051	Lead, Total (Pb)	11.5	<10	17.3	<10	<10	12.0
71900	Mercury, Total (Hg)		<u> </u>			1	
01067	Nickel, Total (Ni)	<15	<15	27	40	15	37
01147	Selenium, Total (Se)	<5	< 5	< 5	<5	<5	< 5
01077	Silver, Total (Ag)		1 32		<u> </u>		
01092	Zinc, Total (Zn)	79	<10	<10	<10	<10	<10

SAMPLES 2 COLLECTION DATE

Noted below

1. AB-3 (3-17-87)

2. AB-3 Bailer Blank (3-17-87)

Mr. T. R. Edgerton T. R. Edgerton, Inc. 102 F Woodwinds Industrial Court Cary, NC 27511

Page 3 of 3

					Page 3 o	f 3	
Storet Number	PARAMETERS Results in MG/L unless otherwise noted	1	2				
00310	BOD5 @ 20°C						
00340	COD @ 0.25N K2Cr2O7						
50060	Chlorine, Total Residual						
00720	Cyanide, Total (CN)						
31616	Fecal Coliform, #/100 ml						
00951	Fluoride, Total (F)						
38260	MBAS, (Detergents)						
00610	Nitrogen, Ammonia, Total						
00625	Nitrogen, Kjeldahl, Total						
00620	Nitrogen, Nitrate, (Brucine)						
00556	Oil & Grease						
00400	pH (Standard Units)						1
32730	Phenols	<0.050	<0.050				
00665	Phosphorus, Total (P)						
00500	Residue, Total						
00530	Residue, Total Nonfilterable				<u> </u>		1
50086	Settleable Matter (ML/L/Hour)				1		•
00076	Turbidity, (NTU)					<u> </u>	
Storet Number	METALS Results in AuG/L			Lisa De	medy		
01105	Aluminum, Total (Al)						
01002	Arsenic, Total (As)	<10	<10				
01007	Barium, Total (Ba)	5432	<50				
01027	Cadmium, Total (Cd)	< 5	<5			<u> </u>	†
01034	Chromium, Total (Cr)	<10	<10				
01042	Copper, Total (Cu)			† · · · · · · · · · · · · · · · · · · ·			
01045	Iron, Total (Fe)				1		1
01051	Lead, Total (Pb)	11.3	14.7		1		
				†	1		
71900	Mercury, Total (Hg)			1			
71900 01067	Mercury, Total (Hg) Nickel, Total (Ni)	27	15	 	1		f
01067	Nickel, Total (Ni)	27 <5	15 <5				
		27 <5	15 <5				

environmental testing inc.

The following is a list of standards that were run with your well samples.

Parameter	Conc.					<u>Units</u>
Phenol Cd,Cr,Ni,Zn Ba As Se Pb	0.1	0.2 0.25 0.5 10.0 5.0 10.0	0.5 0.5 1.0 20.0 10.0 20.0	0.8 1.0 2.5 40.0 20.0 40.0	1.0	mg/1 mg/1 mg/1 ug/1 ug/1

The following is a list of the Quality control data that was run with your well samples.

%	Recovery	

Parameter	03-11-87	03-17-87
As	107	98
Ba	123	120
Cd	84	108
Cr	95	97
Pb	85	85
Ni	97	103
Se	96	113
Zn	98	94
Phenol	102	102

Respectfully submitted,

Lisa G. Kennedy

Biologist

LGK/sjd

ENVIRONMENTAL LABORATORY SERVICES

JOHN M. OGLE
PRESIDENT

P. O. BOX 12298 RESEARCH TRIANGLE PARK, N. C. 27709 Phone (919) 467-3090

Mr. Tom Edgerton

March 24, 1987

T. R. Edgerton, Inc.

P. O. Box 1307

Cary, North Carolina 27511

Reference: Purchase Order Number 1052-004

Dear Mr. Edgerton:

Enclosed you will find the results of the samples submitted to us for chemical analysis. If any part of the analysis data is missing in this report, please be assured that you will receive it very shortly.

All your samples for each and all of the constituents of interest have been analyzed using EPA recommended procedures. If an EPA method was not available, then the method included in "Standard Methods for Water and Wastewater" was used. Additionally, all EPA approved QA/QC protocols were strictly followed during your sample analyses. It is our policy to store such QA/QC data in our files and make them available to our clients for a nominal charge, upon request.

We appreciate your trust with the submitted sample(s) for chemical analysis and hope we will be of service to you in the very near future. If you have any questions regarding this report, do no hesitate to let us know.

Very sincerely yours,

CHEMICAL & ENVIRONMENTAL TECHNOLOGY, INC.

A. D. Shendrikar, PhD Technical Director

ADS/gw

Enclosures: Sample History

Analytical Results

ENVIRONMENTAL LABORATORY SERVICES

JOHN M. OGLE

P. O. BOX 12298 RESEARCH TRIANGLE PARK, N. C. 27709 PHONE (919) 467-3090

March 24, 1987

Page 2 of 7

Mr. Tom Edgerton

T. R. Edgerton, Inc.

P. O. Box 1307

Cary, North Carolina 27511

Reference: Purchase Order Number 1052-004

SAMPLE HISTORY

CLIENT ID	C & ET SAMPLE	DATE RECEIVED	DATE ANALYZED
AB - 1	6712	3/17/87	3/18/87 to 3/23/87
Bailer AB-1*	6713	3/17/87	3/18/87 to 3/23/87
AB-2	6714	3/17/87	3/18/87 to 3/23/87
Bailer AB-2*	6715	3/17/87	3/18/87 to 3/23/87
AB-3	6716	3/17/87	3/18/87 to 3/23/87
Bailer AB-3*	6717	3/17/87	3/18/87 to 3/23/87
DI H ₂ O	6718	3/17/87	3/18/87 to 3/23/87

*Note: Bottle markings conflict with Chain-of-Custody.

ENVIRONMENTAL LABORATORY SERVICES

JOHN M. OGLE PRESIDENT P. O. BOX 12298 RESEARCH TRIANGLE PARK, N. C. 27709 Phone (919) 467-3090

Page 3 of 7

Mr. Tom Edgerton T. R. Edgerton, Inc. March 24, 1987

	\$10						
ANALYTICAL RESULTS							
••		*	Bailer		Bailer		
PARAMETER	METHOD	<u>AB + 1</u>	<u>AB - 1</u>	AB - 2	<u>AB - 2</u>		
Arsenic	206.2	0.006	0.001	0.002	0.001		
Barium	208.1	1.06	< 0.01	1.23	< 0.01		
Cadmium	213.1	0.003	< 0.001	0.002	< 0.001		
Chromium	218.1	0.029	0.017	0.021	0.010		
Lead .	239.1	0.050	0.007	< 0.001	< 0.001		
Nickel	249.1	0.054	< 0.001	< 0.001	< 0.001		
Selenium	270.2	< 0.001	< 0.001	0.001	0.001		
	289.1	0.038	0.006	0.037	0.003		
Pheno1	420.1	< 0.001	0.004	0.007	0.004		
	t t						
• • •				::			
PARAMETER	METHOD	<u>AB - 3</u>	AB - 3	<u>DÎ H_O</u>			
Arsenic	206.2	0.016	0.002	0.001			
Barium	208.1	0.99	< 0.01	< 0.01			
Cadmium	213.1	0.004	0.002	0.002			
Chromium	218.1	0.033	0.020	0.012			
Lead	239.1	< 0.001	< 0.001	< 0.001	'		
Nickel	249.1	0.050	< 0.001	< 0.001			
Selenium	270.2	0.003	0.001	< 0.001			
Zinc	289.1	0.038	0.007	0.008			
Pheno1	420.1	0.002	< 0.001	< 0.001	,		
Zinc Pheno1 PARAMETER Arsenic Barium Cadmium Chromium Lead Nicke1 Selenium Zinc	289.1 420.1 METHOD 206.2 208.1 213.1 218.1 239.1 249.1 270.2 289.1	0.038 < 0.001 AB - 3 0.016 0.99 0.004 0.033 < 0.001 0.050 0.003 0.038	0.006 0.004 Bailer AB - 3 0.002 < 0.01 0.002 0.020 < 0.001 < 0.001 0.001 0.007	0.037 0.007 DI H ₂ O 0.001 < 0.01 0.002 0.012 < 0.001 < 0.001 < 0.001 0.008	0.003		

CHEMICAL & ENVIRONMENTAL TECHNOLOGY, INC.

Kenneth L. Jesneck

Lab Manager.

KLJ/gw

ENVIRONMENTAL LABORATORY SERVICES

JOHN M. OGLE

P. O. BOX 12298 RESEARCH TRIANGLE PARK, N. C. 27709 PHONE (919) 467-3090

Page 4 of 7

Mr. Tom Edgerton T. R. Edgerton, Inc. March 24, 1987

Quality Control Data

ARSENIC

Single Injection Analysis
Known Standard Recovery = 113%, 102%, 112%, 106%

SELENIUM

Single Injection Analysis
Known Standard Recovery = 108%, 104%, 90.0%

BARIUM

	RUN STANDARD	RELATIVE STANDARD	% RECOVERY OR
SAMPLE	DEVIATION	DEVIATION	CONCENTRATION
Known	0.167	1.4%	103%
Digested Blank	0.018	20.5%	< 0.01mg/L
Blank	0.005	20.0%	< 0.01mg/L
Digested Known	0.012	0.6%	83.2%
AB-1	0.058	2.8%	
Bailer AB-1	0.010	25.0%	
AB-2	0.045	1.8%	
Bailer AB-2	0.004	8.6%	•
AB-3	0.025	. 1.3%	
Bailer AB-3	0.018	99.9%	
DI H ₂ O	0.015	68.5%	
Known	0.378	97.3%	
	1 14 1		

CADMIUM

	RUN STANDARD	RELATIVE STANDARD	% RECOVERY OR
SAMPLE	DEVIATION	DEVIATION	CONCENTRATION
Known	0.005	2.8%	93.1%
Digested Blank	0.005	26.1%	<<<0.001mg/L
B1ank "	0.003	20.0%	< 0.001mg/L
Digested Known	0.003	0.8%	96.5%
AB-1	0.001	26.3%	
Bailer AB-1	0.001	99.9%	
AB-2	0.000	11.2%	
Bailer AB-2	0.000	30.1%	
AB-3	0.001	16.3%	
Bailer AB-3	0.000	9.3%	
DI H ₂ O	0.001	23.1%	
4	0.005	2.6%	105%
Known			

CHROMIUM

·	RUN STANDARD	RELATIVE STANDARD	% RECOVERY OR
SAMPLE	DEVIATION	DEVIATION	CONCENTRATION
Known	0.009	4.4%	100%
Digested Blank	0.007	3716%	0.010mg/L
Blank	0.019	99.9%	< 0.001mg/L
Digested Known	0.014	3.4%	104%
AB-1 ·	0.003	4.8%	
Bailer AB-1	0.008	24.7%	, ,
AB-2	0.007	17.1%	
Bailer AB-2	0.002	11.5%	
AB-3	0.005	6.9%	
Bailer AB-3	0.000	0.4%	•
DI H ₂ O	0.004	18.2%	
Known	0.014	7.1%	98.5%
MIOWIL			c

LEAD

SAMPLE	RUN STANDARD R DEVIATION	ELATIVE STANDARD DEVIATION	% RECOVERY OR CONCENTRATION
Known	0.003	1.6%	108%
Digested Blank	0.011	23.1%	< 0.001mg/L
Blank	0.004	8.4%	< 0.001mg/L
Digested Known	0.014	3.9%	89.1%
AB-1	0.003	3.20%	•
Bailer AB-1	0.027	99.9%	•
AB-2	0.003	12.8%	
Bailer AB-2	0:008	25.4%	
AB-3	0.008	8.1%	
Bailer AB-3	0.005	21.5%	2
DI H ³ O	0.017	29.4%	
Known	0.009	4.5%	96.5%

NICKEL

SAMPLE	RUN STANDARD DEVIATION	RELATIVE STANDARD DEVIATION	% RECOVERY OR CONCENTRATION
Known	0.007	7.2%	103%
Digested Blank	0.002	99.9%	< 0.001mg/L
Blank	0.003	55.3%	$0.001 \mathrm{mg/L}$
Digested Known	0.004	0.8%	121%
AB-1 ·	0.010	9.1%	
Bailer AB-1	0.003	39.3%	
AB-2	0.002	99.9%	•
Bailer AB-2	0.004	99.9%	, 1
AB-3	0.009	9.6%	•
Bailer AB-3	0.005	27.7%	•
DI H ₂ O .	0.003	38.7%	
2	0.009	10.2%	87.0%
Known			

STNC

RUN STANDARD	RELATIVE STANDARD % RECOVERY OR
SAMPLE DEVIATION	DEVIATION CONCENTRATION
Known 0.008	3.7% 105%
Digested Blank 0.001	43.7% 0.001mg/L
Blank 0.000	99.9% < 0.001mg/L
Digested Known 0.008	1.9%
AB-1 0.001	1.4%
Bailer AB-1 0.001	11.4%
AB-2 0.002	2.5%
Bailer AB-2 0.001	28.5%
AB-3 0.001	1.6%
Bailer AB-3 0.000	2.6%
DI H ₂ 0 0.001	3.9%
Known 0.001	0.5% 106%
ICHOWLE	

ENVIRONMENTAL LABORATORY SERVICES

JOHN M. OGLE
PRESIDENT

P. O. BOX 12298 RESEARCH TRIANGLE PARK, N. C. 27709 PHONE (919) 467-3090

March 24, 1987

Mr. Tom Edgerton

T. R. Edgerton, Inc.

P. O. Box 1307

Cary, North Carolina 27511

Reference: Purchase Order Number 1052-004

3^{1, (1)};

Dear Mr. Edgerton:

Enclosed you will find the results of the samples submitted to us for chemical analysis. If any part of the analysis data is missing in this report, please be assured that you will receive it very shortly.

All your samples for each and all of the constituents of interest have been analyzed using EPA recommended procedures. If an EPA method was not available, then the method included in "Standard Methods for Water and Wastewater" was used. Additionally, all EPA approved QA/QC protocols were strictly followed during your sample analyses. It is our policy to store such QA/QC data in our files and make them available to our clients for a nominal charge, upon request.

We appreciate your trust with the submitted sample(s) for chemical analysis and hope we will be of service to you in the very near future. If you have any questions regarding this report, do no hesitate to let us know.

Very sincerely yours,

CHEMICAL & ENVIRONMENTAL TECHNOLOGY, INC.

A. D. Shendrikar, PhD Technical Director

ADS/ow

Enclosures: Sample History

Analytical Results

ENVIRONMENTAL LABORATORY SERVICES

JOHN M. OGLE PRESIDENT P. O. BOX 12298 RESEARCH TRIANGLE PARK, N. C. 27709 Phone (919) 467-3090

March 24, 1987

Page 2 of 7

Mr. Tom Edgerton T. R. Edgerton, I

T. R. Edgerton, Inc. P. O. Box 1307

Cary, North Carolina 27511

Reference: Purchase Order Number 1052-004

SAMPLE HISTORY

; •	C & ET		
CLIENT ID	SAMPLE	DATE RECEIVED	DATE ANALYZED
AB-1	6642	3/12/87	3/14/87 to 3/23/87
Bailer AB-1	6643	3/12/87	3/16/87 to 3/23/87
AB-2	6644	3/12/87	3/16/87 to 3/23/87
Bailer AB-2	6645	3/12/87	3/16/87 to 3/23/87
AB-3	6646	3/12/87	3/16/87 to 3/23/87
Bailer AB-3	6647	3/12/87	3/16/87 to 3/24/87
DI H ₂ 0	6648	3/12/87	3/16/87 to 3/24/87
Z			•

^{*}Bottle markings conflict with Chain-of-Custody.

ANALYTICAL RESULTS						
			BAILER	, , , , , , , , , , , , , , , , , , , ,	BAILER	
PARAMETER	METHOD	<u>AB-1</u>	AB1	<u>AB-2</u>	AB-2	
Arsenic	206.2	0,004	0.002	0,003	0.002	
Barium	208.1	1.26	< 0.01	1.12	< 0.01	
Cadmium	213.1	< 0.001	< 0.001	0,001	< 0.001	
Chromium	218.1	0.040	0.017	0,028	< 0.001	
Lead	239.1	0.036	0.037	0.040	0.031	
Nickel .	249.1	0.032	< 0.001	0,005	< 0.001	
Selenium	270.2	< 0.001	< 0.001	< 0.001	< 0.001	
Zinc	289.1	0.032	0.071	0.031	0.074	
Phenol	420.1	0.011	0.004	0.010	0.005	

PARAMETER	METHOD 1	<u>AB-3</u>	BAILER AB-3	DI H ₂ 0
Arsenic	206.2	0.028.	0.003	0.001
Barium	208.1	1.30	< 0.01	0.05
Cadmium	213.1	0.003	< 0.001	< 0.001
Chromium	218.1	0.060	0.007	0.027
Lead	239.1	0.056	0.024	0.023
Nickel	249.1	0.098	< 0.001	< 0.001
Selenium	270.2	< 0.001	< 0.001	< 0.001
Zinc	. 289.1	0.075	0.100	0.073
Phenol	420.1	< 0.001	< 0.001	< 0.001

All result units expressed in mg/L.

CHEMICAL & TON IRONMENTAL TECHNOLOGY, INC.

Kenneth L. Jesneck

Lab Manager

KLJ/gw

^{1&}quot;Method for Chemical Analysis of Water and Wastes," EPA 600/4-79-020.

QUALITY CONTROL DATA

ARSENIC

Single Injection Analysis
Known Standard Recovery = 113%, 102%, 112%, 106%

SELENIUM

Single Injection Analysis
Known Standard Recovery = 90.3%, 86.1%, 108%, 104%

Salar Barrell

BARIUM

•	RUN STANDARD	RELATIVE STANDARD	% RECOVERY OR
SAMPLE	DEVIATION	DEVIATION .	CONCENTRATION
Known	0.078	0.6%	101%
Digested Blank	0.016	8.7%	0.10mg/L
Blank	0.015	9.4%	0.08mg/L
Digested Known	0.151	6.5%	96.6%
AB-1	0.093	3.7%	
Bailer AB-1	0.056	99.9%	
AB-2	0.037	1.6%	
Bailer AB-2	0.021	99.9%	
AB-3	0.116	4.5%	
Bailer AB-3	0.046	99.9%	
DI H ₂ 0	0.034	33.6%	•
Known	0.508	4.3%	100%
TATE O AN TE	· ·		

CADMIUM

	RUN STANDARD	RELATIVE STANDARD	% RECOVERY OR
SAMPLE	DEVIATION	DEVIATION	CONCENTRATION
Known	0.005	2.8%	93.1%
Digested Blank '	0.005	26.1%	< 0.001mg/L
Blank	0.003	20.0%	< 0.001mg/L
Digested Known	0.003	0.8%	96.5%
AB-1	0.003	13.3%	•
Bailer AB-1	0.002	26.6%	·
AB-2	0.004	99.9%	
Bailer AB-2	0.001	77.0%	
AB-3	0.003	40.4%	
Bailer AB-3	0.001	99.9%	
DI H ₂ 0	0.000	7.8%	
2	0.001	0.4%	102%
Known		i i	

CHROMIUM

	RUN STANDARD	RELATIVE STANDARD	% RECOVERY OR
SAMPLE	DEVIATION	DEVIATION	CONCENTRATION
Known	0.013	7.0%	92.7 %
Digested Blank	0.013	99.9%	$0.003 \mathrm{mg/L}$
Blank	0.012	99.9%	0.004mg/L
Digested Known 🐇 🕧	0.023	5.9%	95.1 %
AB-1	0.011	13.3%	
Bailer AB-1	0.016	48.5%	
AB-2	0.016	. 29.0%	*,
Bailer AB-2	0.021	99.9%	1
AB-3	0.003	2.7%	·
Bailer AB-3	0.014	99.9%	
DI H ₂ 0	0.025	47.5%	
4	0.003	1.3%	108%
Known			
			, '

LEAD

		•		
	RUN STANDARD	RELATIVE STANDARD		% RECOVERY OR
SAMPLE	DEVIATION	DEVIATION	,	CONCENTRATION
Known	0.016	7.8%		101%
Digested Blank	0.007	33.4%		0.010mg/L
Blank	0.008	26.3%	•	< 0.001mg/L
Digested Known	0.009	2.0%		107%
AB-1	0.017	24.5%	•	•
Bailer AB-1	0.011	15.2%		
AB-2	0.014	18.1%		
Bailer AB-2	0.012	18.8%	*	
AB-3	0.016	14.7%		•
Bailer AB-3	0.007	14.2%		•
DI H ₂ 0	0.002	4.3%	•	
Knorm	0.009	4.8%	,	, 90.1 %
KTHIUTI				A contract of the contract of

NICKEL

	RUN STANDARD	RELATIVE STANDARD	% RECOVERY OR
SAMPLE	DEVIATION	DEVIATION	CONCENTRATION
Known	0.007	7.2%	103%.
Digested Blank	0.002	99.9%	< 0.001mg/L
Blank	0.003	55.3%	′′ 0.005mg/L
Digested Known	0.004	0.8%	121%
AB-1	0.001	0.9%	
Bailer AB-1	0.007	80.8%	
AB-2	0.004	37.3%	
Bailer: AB-2	0.009	99.9%	1
AB-3	0.003	1.5%	
Bailer AB-3	0.003	10.2%	• • •
DI H ₀ 0	0.003	20.5%	:
2	0.009	10.2%	87.0%
Known			
			•

	RUN STANDARD	RELATIVE STANDARD	% RECOVERY OR
SAMPLE	DEVIATION	DEVIATION	CONCENTRATION
Known	0.008	3.7%	105%
Digested Blank	0.001	43.7%	0.001mg/L
Blank	0.000	99.9%	< 0.001 mg/L
Digested Known	0.008	1.9%	105%
AB-1	0.002	2.5%	
Bailer AB-1	0.000	0.2%	
AB-2	0.001	2.0%	The second second
Bailer AB-2	0.001	0.3%	· -,
AB-3	0.002	1.5%	1
Bailer AB-3	0.000	0.1%	
DI H ₂ 0	0.001	0.6%	•
	0.001	0.5%	103%
Known			

Chain-of-Custody

CHAIN OF CUSTODY RECORD

PROJ. NO. PROJECT NAME			////	7 7 7 7			
1052-004 Worth-Annandale		/	' / / /	///			
SAMPLERS: (Sigpature)	OF		////	/ / /			
SAMPLERS: (Signature)		/_~/		/ / · -	REMARKS		
STA. NO. DATE TIME OU BY STATION LO	TAINERS			Orinkein Mel	Pb, Ni, Se, Zn		
AB-1 311/87 1230 V	2	1, 1, 1		As, Ba, CJ, Cr,	Pb, Ni, Se, Zn		
Bailor B1 3/11/97 1230	2	1, 1,		phinol			
AB-2 3/11/87/1300	2			1			
Bailer 613/1/8/1300	· 2						
AB-3 3/11/87/345	Z	1 (
Bailer B1311811345	2	1 1					
DI 400 311811200	2	1		,			
		れ			•		
·							
					•		
Relinquished by: (Signature) Date / Time Rece 3/12/87	eived by: (Signature)	Relinquished b	y: (Signature)	Date / Time	Received by: (Signature)		
Relinquished by: (Signature) Date / Time Rece	rived by: (Signature)	Relinquished b	Relinquished by: (Signature) Date / Time Received by: (Signature)				
Relinquished by: (Signature) Date / Time Rece (Signature) Discussion: Comm. Accounties Signature	eived for Laboratory by	Date / Ti	ı	Day Turr	around		

CHAIN OF CUSTODY RECORD

PROJ. NO. PROJECT NAME	101 000	T			7	7	7	7 7 7 7	
1352-004 WORTH ANNANDALIE				•/	/	/ /	/	/ / / /	
SAMPLERS: (Signature)	NO.		/	/ ,				///	
Ivi L. Moore	OF		/ 1	7/				REMARKS	
	CON-	/		/	/ ,	Ι,	Ι,		
STA. NO. DATE TIME OF STATION LOCATION	I Amens	/			//		\angle	3 Nay Turnaround	
AN-1 3/11/89	1	1						Cyanide, Zinc, NICKEL, LEAD,	
AN-Z 311/87	1	1						Chromium, Barrien, Arsenic	
AN-3 3/11/87	ì	1		-					
AN-4 3/11/87 V	i	1							
	l	1							
AN-5 3/11/87 / Background	L	ı							
								•	
·							-		
Relinquished by: (Signature) Date / Time Received by: (Signature) 3/12/87		Relino	quished	d by:	: (Sig	nature	 !	Date / Time Received by: (Signature)	
Relinquished by: (Signature) Date / Time Received by: (Signature)	n	Relinquished by: (Signature) Date / Time Received by: (Signature)					Date / Time Received by: (Signature)		
Relinquished by: (Signature) Date / Time Received for Laboratory (Signature)	// / /	310	Date /				mark	3 Day Turnuround	

Cary, NC 27511 CHAIN OF CUSTODY RECORD PROJ. NO. PROJECT NAME 1052-004 Worth Annandale SAMPLERS: 1519nazgret NO. REMARKS CON-Drinking Water Detection Limits **TAINERS** STA. NO. DATE TIME STATION LOCATION 936 15-1787 2 Bailer B18-17-81930 AB-2 3-178/1000 Sailor B13-17-87 1000 7_ AB-3 3-17-80 845 Briter B13-17-87 845 H20 3-17-87 830 Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) . Date / Time Received by: (Signature) Date / Time Relinquished by: (Signature) Date / Time Received for Laboratory by: Remarks

CHAIN OF CUSTODY RECORD Worth Annandale 1052-004 NO. SAMPLERS: (Signature)
Moorl REMARKS CON-Drinking Wester **TAINERS** TIME STATION LOCATION STA. NO. DATE AB-1 3.7-81930 2 Bailer B13-1787 930 AB-Z 3-11 57/000 Bailer B 13-17-87/1000 AB-3 3-17-87 845 Bailer B13 47-87 845 II HOD 2-11 830 Relinquished by: (Signature) Date / Time Received by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Relinquished by: (Signature) Received by: (Signature) Received for Laboratory by: Date / Time Remarks Relinquished by: (Signature) Date / Time

T.R. Edgerton, Inc. Cary, NC 27511 - CHAIN OF CUSTODY RECORD PROJECT NAME PROJ. NO. 1052-004 KlortH-ANMANDALE NO. SAMPLERS: (Signature) CON-**TAINERS** TIME STA. NO. DATE STATION LOCATION 3/11/87/230 1. I 1403/11/87 1200 Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received for Laboratory by: Date / Time Remarks 3 Day Turnaround

Figure

Property Boundary Building AN-1 AN-2 **AN-**3 Legend • -- Soil Sample Locations

Southern Railroad

Storage Pad

• AN<u>-</u>4

Soil Sampling Locations

TREI

Scale: Not to Job No. 1052-086-004